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• No more problem sets and projects! 
• Review session on Wednesday, Dec 14th. 
• Final Exam 

– Tuesday, December 20. 
– 1:30PM – 4:30PM. 
– Rm 33-419. 
– Two cheat sheets are allowed (printed or hand written). 

• Reading: De Kleer, J. H. & Williams, B. C. (1987). Diagnosing 
Multiple Faults. Artificial Intelligence, 32, 97-130 (Second Half). 

• Online Evaluation.  
– Prof. Williams will sponsor donuts and coffee for the final exam if the 

response rate reaches 95%. 

Logistics 

Lecture 25: Sequential Diagnosis 2 



• Diagnosis Algorithm Review. 
• Active Probing and Sequential Diagnosis. 
• Decision Tree and Optimal Measurement Sequence. 
• Minimal Entropy. 

Objective 
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• Given observables and models of a system, identify 
consistent mode assignments.  

• Conflict Recognition 
– Detect symptom from predictions. 
– Extract supporting environments. 
– Construct a set of minimal conflicts. 

• Candidate Generation 

Diagnosis Problems 
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• Model 
– The model for a system is a description of its physical 

structure, plus models for each of its constituents. 

Review of Concepts 

Lecture 25: Sequential Diagnosis 5 



• Observables 
– The set of both system inputs and 

measurements/observations. 

Review of Concepts 
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Inputs 
Measurements 



• Predictions 
– Inferred values for variables in the system which follow from 

the observables given hypothetical mode assignments. 

Review of Concepts 
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X = 6 given that M1 is good; 
[X = 6, {M1  = Good}]  
 
   
    Supporting Environment 

X = 6 



• Symptoms 
– A symptom is any difference between a prediction made by 

the inference procedure and an observation, or between 
two predictions. 

Review of Concepts 

Lecture 25: Sequential Diagnosis 8 

[X = 6, {M1  = Good}] 
 
 
 
[X = 4, {M2 = Good, A1 = Good}]  
 
   

X = 6 

X = 4 



• Conflicts 
– A conflict is a set of mode assignments which supports a 

symptom. 

Review of Concepts 
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        [X = 6, {M1  = Good}] 
 
 
 
        [X = 4, {M2 = Good, A1 = Good}] 
 
 
            Conflict: 
{M1= Good, M2 = Good, A1 = Good} 
   

X = 6 

X = 4 



• Given observables and models of a system, identify 
consistent mode assignments.  

• Conflict Recognition 
– Detect symptom from predictions. 
– Extract supporting environments and minimize them. 
– Construct a set of minimal conflicts. 

• Candidate Generation 
– Generate constituent kernels from minimal conflicts. 
– Use minimal set covering to generate kernel diagnoses from 

constituent kernels. 

Diagnosis Problems 
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Kernel Diagnoses: 
{M1= Unknown}, {A1 = Unknown} 
{M2= Unknown, M3 = Unknown}, {M2 = Unknown, A2 = Unknown} 

 

Example: Circuit Diagnosis 
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Minimal Conflicts: 

{M1= Good, M2 = Good, A1 = Good} 
{M1= Good, M3 = Good, A1 = Good , A2 = Good} 
 

Example: Circuit Diagnosis 
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• Constituent Kernel 
– A Constituent Kernel is a particular hypothesis for how the 

actual artifact differs from the model. It resolves at least 
one conflict. 

Review of Concepts 
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Conflict: 
{M1= Good, M2 = Good, A1 = Good} 
 
  
 Constituent Kernels: 
  {M1=Unknown} 
 {M2=Unknown} 
 {A1=Unknown} 



 
 
 
 
 

 
 
Constituent Kernels: 
{M1= Unknown}, {M2 = Unknown}, {A1 = Unknown} 
{M1= Unknown}, {M3 = Unknown}, {A1 = Unknown}, {A2 = Unknown} 

 

Example: Circuit Diagnosis 

Lecture 25: Sequential Diagnosis 14 



 
 
 
 
 

 
 
Kernel Diagnoses: 
{M1= Unknown}, {A1 = Unknown} 
{M2= Unknown, M3 = Unknown}, {M2 = Unknown, A2 = Unknown} 

 

Example: Circuit Diagnosis 
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• Diagnosis Algorithm Review. 
• Active Probing and Sequential Diagnosis. 
• Decision Tree and Optimal Measurement Sequence. 
• A Greedy Approach: Minimal Entropy. 

Outline 
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• Probing can distinguish among remaining diagnoses. 

Active Probing 
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{M1= U} 
 
{A1 = U} 
 
{M2= U, M3 = U} 
 
{M2 = U, A2 = U} 

Z = 6 

Y = 6 

X = 6 



• Probing can distinguish among remaining diagnoses. 

Active Probing 
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{M1= U} 
 
{A1 = U} 
 
{M2= U, M3 = U} 
 
{M2 = U, A2 = U} 

X = 4 



• Probing can distinguish among remaining diagnoses. 

Active Probing 
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{M1= U} 
 
{A1 = U} 
 
{M2= U, M3 = U} 
 
{M2 = U, A2 = U} 

X = 6 

Y = 6 



• Identify highly likely diagnosis by performing a series 
of probing. 

– Worst case all measurements needed. 
– Some measurement sequences are shorter and more 

efficient. 
– How to design the measurement sequence? 

Sequential Diagnosis 
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• Diagnosis Algorithm Review. 
• Active Probing and Sequential Diagnosis. 
• Decision Tree and Optimal Measurement Sequence. 
• Minimal Entropy. 

Outline 
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• The number of measurements. 
– Isolate the actual diagnosis with the least number of 

measurements. 
 

• Expected number of measurements: 
𝐸 𝑀 = ∑ 𝑝 𝐶𝑖 𝑀 𝐶𝑖𝑖 . 

 

Quality of a Measurement Sequence 
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• M1 has 0.1 probability to fail while A1, A2, M1 and 
M2 have 0.01 possibility to fail. 
 

• The expected  
length is 1.086.  

Quality of a Sequence: Example 
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X? 

Y? 

Z? 

M1=U 

A1=U 
M2=U, 
A2=U 

M2=U, 
M3=U 

4 6 

4 
6 

6 4 

0.915*1 

0.0832*2 
0.000841*3 0.000841*3 



• M1 has 0.1 probability to fail while A1, A2, M1 and 
M2 have 0.01 possibility to fail. 
 

• The expected  
length is 2.997.  

Quality of a Sequence: Example 
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Z? 

Y? 

X? 

M3=U, 
M2=U 

A2=U, 
M2=U 

A1=U M1=U 

4 6 

6 
4 

6 4 

0.000841*1 

0.000841*2 
0.0832*3 0.915*3 



• The length of the sequence. 
– Isolate the actual diagnosis with the least number of 

measurements. 
 

• The outcome of a measurement is unknown. 
– A static sequence is insufficient. 
– Need a strategy (policy).  
– Use a decision tree. 

Quality of a Measurement Sequence 
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• It has a tree structure which consists of a series of 
measurements. Each measurement branches the tree 
and a follow-up measurement is planned unless an 
actual diagnosis is isolated.  

Decision Tree 
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Y? 

X? 

M1=U A1=U 
M2=U, 
A2=U 

M2=U, 
M3=U 

4 6 

4 4 6 4 

Z? 



• It has a tree structure which consists of a series of 
measurements. Each measurement branches the tree 
and a follow-up measurement is planned unless an 
actual diagnosis is isolated.  

• Structure: 
– Each internal node places a probe at one point . 
– Each branch corresponds to a measurement outcome. 
– Each Leaf node assigns an actual diagnosis. 

Decision Tree 
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• A ← The next measurement to take. 
• Construct a node N with A. 
• For each possible outcome of A, create new 

descendent of node N. 
• Check if any descendants fit a diagnosis: 

– If one class is perfectly fit by an diagnosis , stop. 
– Else, return to the first step. 

Build a Decision Tree – Top Down Induction 
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• At each step, choose the measurement that minimizes 
the expected “Cost to go”. 
After i-1 steps, 𝑀 =< 𝑀1,𝑀2, … ,𝑀𝑖−1 > 

𝐶𝑗
𝑀𝑖 = 1 + � 𝑃(𝑀𝑖 = 𝑉𝑖𝑗|𝑀)

𝑉𝑖𝑖∈𝑀𝑖

× Cj+1 

𝐶𝑗 = 0 if a unique diagnosis exists at the node. 
 

• 𝑚𝑁 × 𝑁! possible trees! 
• How to find 𝐶𝑗+1 cheaply? 

 
 
 

 
 

The Next Best Decision 
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• “Best” measurement maximizes information gain. 
– And minimizes uncertainty in remaining diagnoses. 

 

• Entropy(S) = expected number of bits needed to 
encode the label c(x) of randomly drawn members of 
s (under the optimal code). 
 

Minimal Entropy 
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• Flip coin example. 
– heads and tails have 

equal probability: 
uncertainty reaches 
maximum. 
 

– if  the coin is not fair, 
there is less uncertainty. 
 

– Tails/heads never come 
up: No uncertainty. 

How Entropy Change? 
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• Diagnosis:  
– Identify highly likely diagnosis by sequential measurements. 
– Minimize the number of measurements to isolate the actual 

diagnosis.  

• Information theory (Shannon 1951):  
– Cost of locating a diagnosis of probability 𝑝: 

𝑙𝑙𝑙 𝑝(𝐶𝑖)−1 
– Expected cost of identifying the actual diagnosis:  

𝐻 𝐶 = �𝑝(𝐶𝑖) 𝑙𝑙𝑙 𝑝(𝐶𝑖)−1
𝑖

 =  −�𝑝(𝐶𝑖) 𝑙𝑙𝑙 𝑝(𝐶𝑖)
𝑖

 

 
 

Minimal Entropy 
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• At a given stage, the expected entropy 𝐻𝑒(𝑥𝑖) after 
measuring quantity 𝑥𝑖 is given by: 

𝐻𝑒 𝑥𝑖 =  �𝑝 𝑥𝑖 = 𝑣𝑖𝑖 𝐻(𝑥𝑖 = 𝑣𝑖𝑖)
𝑚

𝑖=1

 

– where 𝑣𝑖1, … 𝑣𝑖𝑚 are all possible values for 𝑥𝑖, and 
H(𝑥𝑖 = 𝑣𝑖𝑖) is the entropy resulting if 𝑥𝑖  is measured to be 
𝑣𝑖𝑖.  

– We need to calculate 𝑝 𝑥𝑖 = 𝑣𝑖𝑖  and 𝐻 𝑥𝑖 = 𝑣𝑖𝑖 . 

 
 
 
 

Expected Entropy after measurement 
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• For a given measurement outcome 𝑥𝑖 = 𝑣𝑖𝑖: 
– 𝑆𝑖𝑖: diagnoses predicting 𝑥𝑖 = 𝑣𝑖𝑖. 
– 𝑈𝑖: diagnoses which predict no value for 𝑥𝑖. 
– 𝑅𝑖𝑖: diagnoses that would remain if 𝑥𝑖 = 𝑣𝑖𝑖. 
– 𝐸𝑖𝑖:diagnoses inconsistent with 𝑥𝑖 = 𝑣𝑖𝑖. 

 
– We have: 

• 𝑅𝑖𝑖 = 𝑆𝑖𝑖 ∪ 𝑈𝑖.  
• 𝑅𝑖𝑖 𝑎𝑎𝑎 𝐸𝑖𝑖 partition all diagnoses. 
• 𝑈𝑖 𝑎𝑎𝑎 𝑆𝑖𝑖  partition all remaining diagnoses.  

 

Probability of a measurement outcome 
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• If Ui = 𝜙: 
𝑝 𝑥𝑖 = 𝑣𝑖𝑖 = 𝑝 𝑆𝑖𝑖  

 
• If Ui ≠ 𝜙: 
 

𝑝 𝑥𝑖 = 𝑣𝑖𝑖 = 𝑝 𝑆𝑖𝑖 + 𝜖𝑖𝑖 , 0 < 𝜖𝑖𝑖 < 𝑝(𝑈𝑖) 
 

– 𝜖𝑖𝑖 is the error term from 𝑈𝑖. 
– If a candidate diagnosis doesn’t predict a value for a 

particular 𝑥𝑖, we assume each possible 𝑣𝑖𝑖 is equally likely: 
𝜖𝑖𝑖 = 𝑝(𝑈𝑖)/𝑚 

Probability of a measurement outcome 
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• 𝐻 𝑥𝑖 = 𝑣𝑖𝑖 = 

−�𝑝 𝐶𝑙 𝑥𝑖 = 𝑣𝑖𝑖 log 𝑝 𝐶𝑙 𝑥𝑖 = 𝑣𝑖𝑖
𝑙

 

– Sum over probability of diagnosis given the hypothetical 
outcome for 𝑥𝑖. 

 
• By Bayes’ Rule: 
𝑝 𝐶𝑙 𝑥𝑖 = 𝑣𝑖𝑖 = 𝑝(𝑥𝑖 = 𝑣𝑖𝑖|𝐶𝑙)𝑝(𝐶𝑙)/𝑝(𝑥𝑖 = 𝑣𝑖𝑖) 

Entropy of a measurement outcome 
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• 𝑝(𝑥𝑖 = 𝑣𝑖𝑖|𝐶𝑙):  
– probability of the hypothetical outcome given the diagnosis.  
– 𝐶𝑙 entails 𝑥𝑖 = 𝑣𝑖𝑖, i.e., 𝐶𝑙 ∈ 𝑆𝑖𝑖: 

 𝑝 𝑥𝑖 = 𝑣𝑖𝑖 𝐶𝑙 = 1. 
 

– 𝐶𝑙 entails 𝑥𝑖 ≠ 𝑣𝑖𝑖 , i.e., 𝐶𝑙 ∈ 𝐸𝑖𝑖: 
𝑝 𝑥𝑖 = 𝑣𝑖𝑖 𝐶𝑙 = 0.   

 
– If 𝐶𝑙 predicts no value for 𝑥𝑖, i.e. 𝐶𝑙 ∈ 𝑈𝑖: 

𝑝 𝑥𝑖 = 𝑣𝑖𝑖 𝐶𝑙 = 1
𝑚

. 

 
 

Observation Given Diagnosis 
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• Initially, 

𝑝(𝐶𝑙) =  �𝑝 𝑐 𝑓𝑎𝑓𝑙 � 1 − 𝑝 𝑐 𝑓𝑎𝑓𝑙
𝑐∉𝐶𝑙𝑐∈𝐶𝑙

 

 
 

• 𝑝 𝐶𝑙 𝑥𝑖 = 𝑣𝑖𝑖  → 𝑝(𝐶𝑙) given 𝑥𝑖 = 𝑣𝑖𝑖.  
 

Probability of a Diagnosis 
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• 𝑝 𝐶𝑙 𝑥𝑖 = 𝑣𝑖𝑖  = 
   0       if 𝐶𝑙 ∈ 𝐸𝑖𝑖 
   𝑝 𝐶𝑙

𝑝 𝑥𝑖=𝑣𝑖𝑖
    if 𝐶𝑙 ∈ 𝑆𝑖𝑖 

   𝑝 𝐶𝑙 /𝑚
𝑝 𝑥𝑖=𝑣𝑖𝑖

  if 𝐶𝑙 ∈ 𝑈𝑖 

 
– Where 𝑝 𝑥𝑖 = 𝑣𝑖𝑖 = 𝑝 𝑆𝑖𝑖 + 𝑝(𝑈𝑖)/𝑚.  

 

• Some candidate diagnoses will be eliminated. The 
probabilities of the remaining diagnoses 𝑅𝑖𝑖 will shift. 
 
 

Wrap up the answer 
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• Therefore: 

𝐻 𝑥𝑖 = 𝑣𝑖𝑖 = − � 𝑝 𝐶𝑙 𝑥𝑖 = 𝑣𝑖𝑖 𝑙𝑙𝑙𝑝 𝐶𝑙 𝑥𝑖 = 𝑣𝑖𝑖
𝐶𝑙∈𝑅𝑖𝑖

=  − �
𝑝 𝐶𝑙

𝑝 𝑥𝑖 = 𝑣𝑖𝑖
log

𝑝 𝐶𝑙
𝑝 𝑥𝑖 = 𝑣𝑖𝑖

 
𝐶𝑙∈𝑠𝑖𝑖

− �
𝑝 𝐶𝑙

𝑚𝑝 𝑥𝑖 = 𝑣𝑖𝑖
log

𝑝 𝐶𝑙
𝑚𝑝 𝑥𝑖 = 𝑣𝑖𝑖𝐶𝑙∈𝑈𝑖

 

 
– if 𝐶𝑙 ∈ 𝐸𝑖𝑖, i.e., 𝐸𝑙 entails 𝑥𝑖 ≠ 𝑣𝑖𝑖, 
𝑝 𝐶𝑙 𝑥𝑖 = 𝑣𝑖𝑖  𝑙𝑙𝑙𝑝 𝐶𝑙 𝑥𝑖 = 𝑣𝑖𝑖 = 0. 

 

Wrap up the answer 
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• Given the cascaded inverters model and X = 1. Find 
the actual diagnosis. 
 
 
 

• Four options: M, Y, N and Z 
• The failure rate of a component is 0.01. 
• To simplify the notation, we use A=S to represent the 

diagnosis {A=S, B=G, C=G, D=G}. 

Example: Cascaded Inverters 
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• Let’s consider M. 
– If M is 1, the only candidate that supports M=1 is A=S,   

• 𝑝 𝑀 = 1 = 𝑝 𝐴 = 𝑆 = 0.0097. 

• 𝑝 𝐴 = 𝑆 𝑀 = 1 = 𝑝 𝑀 = 1 𝐴 = 𝑆 ∗ 𝑝 𝐴=𝑆
𝑝 𝑀=1

= 1. 

• 𝐻 𝑀 = 1 = 1 log 1 = 0. 
– If M is 0, all the other candidates supports it. 

• 𝑝 𝑀 = 0 = 𝑝 𝐵 = 𝑆 𝐶 = 𝑆 𝐷 = 𝑆 𝐴𝑙𝑙 𝐺 = 0.9903. 

• 𝑝 𝐵 = 𝑆 𝑀 = 0 = 𝑝 𝑀 = 0 𝐵 = 𝑆 ∗ 𝑝 𝐵=𝑆
𝑝 𝑀=0

= 0.0098. 

• …… 
• 𝐻 𝑀 = 0 = 0.165. 

• 𝐻𝑒 𝑀 = 𝑝 𝑀 = 1 𝐻 𝑀 = 1 + 𝑝 𝑀 = 0 𝐻 𝑀 = 0 = 0.1634. 
 

Example: Cascaded Inverters 
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• We get: 
– 𝐻𝑒 𝑀 = 0.1634. 
– 𝐻𝑒 𝑌 = 0.1223. 
– 𝐻𝑒 𝑁 = 0.0864. 
– 𝐻𝑒 𝑍 = 0.0538. 

 

 
 
 
 

• Measuring Z minimize the entropy. 

Example: Cascaded Inverters 
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0.1
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He(M) He(Y) He(N) He(Z)



Example: Cascaded Inverters 
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Z? 
0 

X = 1 Z = 0 



• Next step. 
 
 

– We have X = 1 and Z = 0. 

 
• Next best measurement? 

 
 
 
 
 

Example: Cascaded Inverters 
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• We can get: 
– 𝐻𝑒 𝑀 = 0.8240. 
– 𝐻𝑒 𝑌 = 0.6931. 
– 𝐻𝑒 𝑁 = 0.8240. 

 
 
 
 
 

• Measuring Y minimizes the entropy. 

Example: Cascaded Inverters 
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Example: Cascaded Inverters 
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Z? 
0 

X = 1 

Y? 

Z = 0 

0 

Y = 0 



Example: Decision Trees of Cascaded Inverters 
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Z? 
0 

X = 1 

Y? 

Z = 0 

0 

Y = 0 

M? 

1 

A=S 

M = 1 



• If the failure rate of A is 0.025 
– 𝐻𝑒 𝑀 = 0.5951. 
– 𝐻𝑒 𝑌 = 0.6307. 
– 𝐻𝑒 𝑁 = 0.8125. 

 
 
 
 
 
 

• Measuring Y no longer minimizes the entropy (why?). 
 

Example: Cascaded Inverters 
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• Expected entropy evaluates each measurement. The 
smaller it is, the better the measurement will be. 

𝐻𝑒 𝑥𝑖 =  �𝑝 𝑥𝑖 = 𝑣𝑖𝑖 𝐻 𝑥𝑖 = 𝑣𝑖𝑖

𝑚

𝑖=1

 

• At each stage, we choose the measurement with the 
minimal expected entropy. 

• Repeat until we reach one unique diagnosis (or most 
probable). 

Summary 
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• Sequential Diagnosis. 
– To generate the actual candidate diagnoses. 
– Eliminate incorrect diagnoses after each measurement. 

• Decision Tree. 
– Represents the probing strategy for sequential diagnosis. 
– Constructing an optimal decision tree is computationally 

prohibitive. 

• A Greedy Approach: Minimal Entropy. 
– At each stage, compute the expected entropy of each 

measurements. 
– Take the one with the lowest entropy (lowest uncertainty 

among candidate diagnoses).  
 

Summary 
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• Definition: 
Classification is the task that maps each attribute set x 
to one of the predefined class y. 

Classification 
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• Peng wants to buy a PTS. He collected some data from 
the bank to analyze his opportunity of getting a loan. 
 
 
 
 
 

• Is it likely that Peng will get the loan? Why? 
 

Example: Apply for a loan 
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Home  
Owner 

Marital 
Status 

Annual 
Income 

Approved? 

Yes Single 125K Yes 

No Single 90K No 

No Married 70K No 

Yes Divorced 150K Yes 

No Single 25K ? 



• Definition: 
Classification is the task that maps each attribute set x to 
one of the predefined class y. 

 
• Solving a Classification Problem: 
Construct a classifier, which builds classification models 
from data sets. 

– Learning a model which fits the attribute set and the class 
labels of the input data. 

– Apply the model to the new data and decide its class. 

Classification 
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• It is a tree structure classifier which consists of a 
series of questions. Each question branches the tree 
and a follow-up question is asked until a conclusion is 
reached.  

Decision Tree 
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Home 
Owner 

Marital 
Status 

Annual 
Income 

Annual 
Income 

Accept 

Accept Reject Accept Reject 

Yes No 

Single 
Divorced Married 

>70K <=70K >90K <=90K 



• A ← The next attribute to decide. 
• Construct a node N with A. 
• For each possible value of A, create new descendent 

of node N. 
• Check if any descendants fit a class: 

– If one class is perfectly fit by a descendant, stop. 
– Else, iterate over new leaf nodes. 
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Example 

Lecture 25: Sequential Diagnosis 61 

Home 
Owner 

Marital 
Status 

Annual 
Income 

Annual 
Income 

Accept 

Accept Reject Accept Reject 

Yes No 

Single 
Divorced Married 

>70K <=70K >90K <=90K 

Home  
Owner 

Marital 
Status 

Annual 
Income 

Approved? 

Yes Single 125K Yes 

No Single 90K No 

No Married 70K No 

Yes Divorced 150K Yes 



Example 
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Home 
Owner 

Marital 
Status 

Annual 
Income 

Annual 
Income 

Accept 

Accept Reject Accept Reject 

Yes No 

Single 
Divorced Married 

>70K <=70K >90K <=90K 

Home  
Owner 

Marital 
Status 

Annual 
Income 

Approved? 

Yes Single 125K Yes 

No Single 90K No 

No Married 70K No 

Yes Divorced 150K Yes 
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